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Abstract

In order to extend the investigation addressed in Part I of this series to treat the multi-cracks problem in a finite
brittle solid, this paper deals with the M-integral analysis for microcrack damage in the brittle phase of a metal/ceramic
bimaterial. The basic idea is based on such a concept that the outside boundaries of the finite solid could be considered
as a special kind of interface between air and the solid or between a rigid body and the solid. Following the work did by
Zhao and Chen (Archive of Applied Mechanics 67, 393-406), who have found the contribution induced from the in-
terface of the bimaterial to the J,-integral, the first task of this paper is to reexamine the conservation laws of the J;-
vector in the interaction problem among the interface and multi-subinterface microcracks. Unlike the conclusion given
in Part I, the vanishing nature of both components of the J;-integral vector at infinity should include the contribution
arising from the interface (as another kind of discontinuity). Only after clarifying this contribution, could new for-
mulations of the conservation laws of the vector be deduced. This will lead to a correct way, from which the extension
of the present investigation to treat a finite solid could be performed. Furthermore, the second task of this paper is
aimed at providing a fundamental understanding of the interaction effect and the coalescence tendency for the mi-
crocracks based on the M-integral analysis as influenced by the existence of the ductile phase. Numerical results are
given for the Cu/Al,O; and the Ni/MgO bimaterial solids. It is concluded that the M-integral actually plays an im-
portant role for microcrack damage in the brittle phase of the bimaterial solids, which could be considered as a measure
of the damage level and the coalescence tendency among the microcracks. It is concluded also that for a certain mi-
crocrack array the value of the M-integral in metal/ceramic bimaterial solids is always larger than that in homogeneous
brittle solids. This means that the same microcrack array in the former cases shows lower stability and larger coales-
cence tendency than that in the later cases due to the existence of the ductile phase or due to the interaction of the
microcrack array with the interface. Of great interest is that the divergencies of the M-integral values in bimaterials
from those for the same microcrack array in homogeneous brittle solids are dominated by the first Dundurs parameter
with no regards to the second Dundurs parameter. Finally, an extension of this investigation to treat microcrack
damage in a half plane brittle solid is discussed briefly to show the potential applications of the M-integral analy-
sis. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As well-known, path-independent integrals proposed in plane fracture mechanics could be divided into
two catalogues. Some of them are concerned only with the computation of critical parameters associated
with one single crack extension since they involve only the evaluation of path-independent contour inte-
grals, the data for which are available from numerical solutions for boundary value problems under
consideration without any special treatment of the near-tip region of the crack (see e.g., Freund, 1978; Stern
et al., 1976; Chen, 1985). However, the others have some definite physical meanings. For example, besides
the well-known J-integral (Rice, 1968) with a precise and clear physical significance as the rate of total
potential energy release per unit crack-tip advance, the L-integral and the M-integral (Knowles and
Sternberg, 1972; Budiansky and Rice, 1973) have been given as the crack rotational energy release rate and
the crack uniform expansion energy release rate, respectively (Herrmann and Herrmann, 1981).

On the other hand, interface cracks including subinterface cracks in bimaterial solids in view of their
importance in numerous applications have received considerable attention in the past twenty years (see e.g.,
Hutchinson et al., 1987; Park and Earmme, 1986; He and Hutchinson, 1989; Lardner et al., 1990; Evans
et al., 1986; Chen and Lardner, 1993; Chen and Hasebe, 1994; Rice, 1988; Suo and Hutchinson, 1989; 1990;
Suo, 1989; Lu and Lardner, 1992). Recently, the interaction of microcracks in the near-tip process zone
with an interface crack and the interaction among multiple subinterface cracks are investigated (see, Isida
and Noguchi, 1994; Zhao and Chen, 1996; 1997a,b). It is found that a conservation law does exist among
three values of the J-integral respectively contributed by the macro-interface crack tip, the microcracks in
the near-tip process zone, and the remote stress field. It is found also that the contribution to the J-integral
arising from the existence of the microcracks could be evaluated by using the projected values of the J;-
vector defined in a local system for each microcrack (Zhao and Chen, 1997a). Moreover, it is concluded
that for multi-subinterface cracks, the summation of the first component of the J;-vector arising from all
the cracks vanishes due to the zero contribution induced from the interface to the Ji-integral (Zhao and
Chen, 1997b). However, the summation of the second component of the J;-vector, generally speaking, does
not vanish due to the non-zero contribution induced from the interface to the J,-integral when the chosen
integral contour cuts the interface and encloses a segment of the interface (Zhao and Chen, 1997b).

This paper has two goals. First, as a progress of the investigation addressed in Part I, the conservation
laws of the J;-vector and the independence of the M-integral from the selection of global coordinates for a
cloud of interacting microcracks in the brittle phase of metal/ceramic bimaterial solids are reexamined.
Special attention is focused on the contribution induced from the whole interface to the second component
of the vector when setting the origin of coordinates not on the interface and taking an infinite large closed
contour surrounding all the discontinuities completely. Only after doing so, could the restriction arising
from the discussion in Part I of this series be removed. Second, a fundamental understanding of the in-
teraction effect and the coalescence tendency for the subinterface microcracks is given by using the M-
integral analysis in metal/ceramic bimaterials. Numerical results for Cu/Al,O; and Ni/MgO bimaterial
solids show that the M-integral does not actually depend on the selection of the global coordinates and it
does play an important role for evaluating microcrack damage in the brittle phase of metal/ceramic bi-
material solids. It is concluded that the M-integral is divided into two distinct parts similar to those did in
Part I of this series. However, the formulation of the second part called as the additional part is not only
concerned with the contribution induced from the J,-vector and the coordinates of each crack center, but
also with the contribution induced from the whole interface (as another kind of discontinuity). Detailed
manipulations reveal that the later contribution does not lead to the dependence of the integral on the
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selection of the global coordinates, either on the movement or on the rotation of the global coordinates.
Moreover, numerical results show that, in the most cases of microcrack configurations under consideration,
the net-part of the integral could not always provide overwhelming superiority over the additional part of
the integral. A number of comparisons between the results in bimaterial solids and those in homogeneous
solids are performed. It is found that the values of the M-integral in the metal/ceramic solids are always
larger than the corresponding values arising from the same microcrack configurations in homogeneous
brittle solids. This means that a certain microcrack array in the brittle phase of metal/ceramic solids shows
lower stability and larger coalescence tendency than the corresponding one in homogeneous brittle solids
due to the existence of the ductile phase. Of great interest is that the divergencies of the M-integral values in
metal/ceramic bimaterials from those for the same microcrack array in homogeneous brittle solids are
dominated by the first Dundurs parameter with no regards to the second Dundurs parameter.

The extension of the present investigation to treat the multi-cracks problem in a half plane solid is
discussed briefly by considering the outside boundaries of the solid as a special kind of interface between air
and the solid. It is emphasized that this is the only correct way to study the conservation laws of the J;-
integral vector and the M-integral for microcrack damage in a finite brittle solid.

2. Conservation laws of the J;-vector in bimaterials

The microcrack damage problem considered here is shown in Fig. 1, in which N microcracks are formed
in the brittle phase (i.e., the material 2 occupies the lower half plane) of a metal/ceramic bimaterial solid.
The microcracks may be induced from thermal mismatch, impact or other sources, which may have dif-
ferent lengths (denoted by 24, ) and different oriented angles with respect to the interface (denoted by ¢,).
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=

Fig. 1. A cloud of interacting microcracks beneath the interface in a metal/ceramic bimaterial solid.
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Two global coordinate systems are introduced respectively, say, (x},x9) and (x1,x,). The origin of (x¥,x9) is
taken to be located on the interface and the x{-axis to be parallel to the interface, while the origin of (x;,x)
is taken to be not located on the interface and the x;-axis to be still parallel to the interface (see Fig. 1).
Therefore, the coordmates of microcrack centers in (x,x5) denoted by (51 ,52 ') and those in (x1,x,)
denoted by (f 52 ) are related by

=%y, H=8Y4n (k=12,...,N), (1)

where the superscript (k) refers to the kth microcrack, and #, and #, are constants which represent the
translation from the system (x,x3) to the system (x;,x,).

Besides these, two local coordinate systems are also introduced for a typical microcrack (k) below the
interface. Here, (x(lk),xg ) is parallel to (xy,x9), while (x1 ),xg ') is oriented with respect to (x1 ,x2 ') by ¢,.
Three kinds of closed contours, i.e., Iy, I’ and I'; are introduced (see Fig. 1). Here, I'; encloses all the
microcracks and cuts the interface at the points 4 and B, I' encloses all the microcracks but does not cut the
interface, and I'; encloses the kth microcrack only but does not cut the interface.

The bimaterial solid is loaded by the remote tensile stress ¢ with an inclined angle {y and the remote
horizontal stresses ¢7° and 652 .

According to the path-independent nature of the J;-integral vector, the following formulations are valid
(Knowles and Sternberg, 1972; Budiansky and Rice, 1973):

Jk(ro):‘/r (Wi’lk*Tﬂ/l[’k)dS:Jk(F)+Jk(AB) (k: 172), (2)

where J,(I'y), Ji(I'), and J;(4B) denote the values of the vector calculated along the three different contours
Iy, I', and 4B, respectively (see Fig. 1). The last two ones could be given as follows:

N
Jk(r) = ZJk(FK) (k = 172)7 (38')
K=1
Ji(4B) :/ (W) — Tlu)ds (k= 1,2), (3b)
AB
where [ ] denotes the jump of the corresponding quantities across the interface.
Obviously,
5(@B) = [ (W) = Tfu]) ds =0 @)
AB

due to the fact that the component #, vanishes and the displacement continuity conditions across the in-
terface are met.

Therefore, the conservation law for the first component of the vector is still valid (see Egs. (13a) and
(13b) or (15) in Part I of this series). Attention should only be focused on the J,-integral analysis in Egs. (2)
and (3b) to establish a new law instead of Eq. (14) or (15) in Part I.

According to the work did by Smelser and Gurtin (1977), the following equation is valid in a bimaterial
without cracks:

Jr = /r 9z = ) s - /1 (] = oafusa]) ds = 0, (5)

where Iy refers to a closed contour cutting the interface at points 4 and B, while / refers to the segment of
the interface from 4 to B.
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For the multi-subinterface cracks shown in Fig. 1, it follows that:
/ (Wny — oynjuin)ds = /([w} — opluix])ds + /(an — oyn;u;5) ds, (6)
Iy 1 r

where I' is a closed contour surrounding all the cracks but does not cut the interface (see Fig. 1).
Assume that the stress field and the displacement field consist of two distinct parts. One of them is

induced from the uniform remote loading conditions and the other is induced from the existence of the

subinterface multi-cracks

p w=u’ +u- (i,j=1,2), (7)

6’:/' = O-IL/J + o-zj7
where the superscripts U and E refer to the uniform remote loading and the existence of the cracks, re-
spectively.

Thus, Eq. (6) could be reformulated as

/F (WY + B+ WYE 1+ W)y — (0Y + o), (uly + ufy)) ds
0

= /([WU + WE + wYE 4 wEn, — (o*il; + ag)nj[u,U2 + ufz])ds + /((WU + WE 4+ wYE 4 wEn,
! r

— (o] + op)n;(ui; + ugy)) ds, 8)

where the superscript UE and EU refer to the interleaving terms contributed by the stresses arising from the
remote loading and the displacements arising from the existence of the cracks or vice versa.

Obviously, the summation among the interleaving terms vanishes due to the well-known Betii-reciprocal
theory. Therefore, Eq. (8) leads to

/ (WY + WEny — (anuy + opnupy)) ds = /I([WU + WEny — (a/ni{us) + apn;luf,))) ds
Iy

[ W — (o} + oEm (s + ) ds. )

When setting the closed contour I'y to be infinite large so that the whole interface from —oco to co is
enclosed in it, the physical quantities 65., uF, WE on I'y vanish due to they asymptote nature at infinity. But
they may not vanish on the closed contour I" or on the interface from —oo to co. By substituting Eq. (5) into
(9), the latter becomes

/ ([WE]nz — JSn,[qu]) ds + /(WEnz — afjnjufz) ds=0 (10)

00 I

which could simply be reformulated as
N
> B 4 Jre =0 (11)
k=1

keeping in mind that the two terms in the left side of Eq. (11) denote the contributions of the N subinterface
cracks and the whole interface to the J,-integral, respectively.

In other words, the contribution induced from the subinterface multi-cracks cancels with those induced
from the whole interface. Therefore, Eq. (11) does represent a new conservation law in bimaterials, which
will be found to be very useful in the forthcoming manipulations about the M-integral analysis.

As regards the numerical methods, obviously, the first term in Eq. (11) is the summation of the con-
tributions induced from each subinterface crack. It could be calculated by using Egs. (7), (8) and (10) in



3218 Y.-H. Chen | International Journal of Solids and Structures 38 (2001) 3213-3232

Part I of this series when the interaction problem shown in Fig. 1 is solved (Zhao and Chen, 1997b). Of
course, the local-global coordinate translation should be adopted (see Fig. 1) and the contribution induced
from the traction-free surfaces of each crack should be taken into account (Herrmann and Hermann, 1981).
However, the second term in Eq. (11) provides a new problem, which should be solved by developing a new
technique for treating the infinite integral intervals involved. Such a technique is similar to that cited in
Appendix B of Part I by using the Chebyshev Polynomial and the Chebyshev integration together with
some variable translation (Hutchinson et al., 1987). This topic is no longer repeated here for shortening the
length of this paper.

In order to confirm the new conservation law (11), a numerical example is presented here. Without loss
of generalities, a single subinterface crack is considered, which is parallel to the interface in the brittle phase
of a bimaterial solid. The distance between the crack and the interface is denoted by /4, while « refers to the
half-length of the crack. The mathematical technique for solving the simple problem is based on the work
did by Zhao and Chen (1997b), from which all the stress-displacement values at any point in the metal/
ceramic bimaterial could then be given without any difficulty. Thus, the contributions of the subinterface
crack and the whole interface (—oo, +00) to the J,-integral could be calculated numerically. Numerical
results for Cu/Al,O; bimaterial solid and under the remote loading o), = 035 = 0 =constant are shown
below

vy)ma?

+00 O.2 (1 _
J2 = / ([W] — sz[uk‘zbdx = —013875760027 (123)
—00 12%)
for the whole interface, and
a 2 1— 2
Jr = / ([]) dx = 0.1387576w (12b)
—a 2

for the subinterface crack, where [ ] denotes the jump of the corresponding quantities across the interface
or across the subinterface crack.

Eqgs. (12a) and (12b) are well agree with each other. They do confirm the new conservation law (11) for
the Jy-integral. In other words, the total contribution of the subinterface crack and the whole interface to
the J,-integral vanishes, providing that the closed contour is taken to be infinite large, which encloses the
whole interface as well as the crack. Indeed, this supports such a concept that the whole interface does
represent a different kind of discontinuity from cracks.

In fact, by comparing Eq. (14) in Part I of this series with Eq. (11) in this paper, it is seen that the later
could be considered as a special case of the former. If one uses N to denote the number of all the dis-
continuities in the bimaterial rather than the number of the cracks only, the former will become universal.
Of course, other discontinuities, such as voids, kinking cracks, curve cracks or inclusions, can not alter the
conservation laws of the J;-vector if the closed contour encloses all kinds of discontinuities completely.

It should be emphasized also that the conservation laws of Eq. (11) mentioned above and Egs. (13a) and
(13b) in Part I are only suitable to treat the case with the interface perpendicular to the x,-axis. If it is not
so, for example, the interface is perpendicular to the x;-axis rather than the x,-axis, the above manipu-
lations should be repeated for evaluating the J;-integral rather than the J,-integral. The laws should then be
replaced by

N
S i =0, (13a)
k=1

N
> A =o, (13b)
k=1
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keeping in mind that J,., refers to the contribution induced from the whole interface to the first component
of the vector.

3. Independence of the M-integral from the coordinate selection in bimaterials

After clarifying the role the J;-vector plays in bimaterials with multi-subinterface cracks, the indepen-
dence of the M-integral from the coordinate selection shown in Fig. 1 could be reexamined. In this section,
analytical treatments are divided into two catalogues. First of them is associated with the global coordi-
nates originated on the interface, while the second with the global coordinates not originated on the in-
terface.

Special attention is always focused on the contribution arising from the segment 4B. Indeed, confusion,
if exists, is always induced from the misunderstanding or oversight of the segment. Up to date, it is not clear
what happens to the M-integral in the present problem shown in Fig. 1 when choosing the different closed
contours I" (below the interface) or I'y (across the interface), respectively. In fact, many people believe that
the value of the M-integral should depend on the location of the coordinates. This confusion will be
clarified below.

3.1. The origin of the coordinate system located on the interface

The global coordinate system (x?,x}) is assumed as originated on the interface (see Fig. 1). From the

original definition of the M-integral as cited by Eq. (1) in Part I (Knowles and Sternberg, 1972; Budiansky
and Rice, 1973), the M-integral calculated along Iy in Fig. 1 should be equal to the summation of the
contributions induced from the segment 4B and I', respectively

Mro(xhxz) MAB(xlaxz)"i'Mr(xlaxg) (14)

where the subscripts I'y, 4B, and I refer to the contributions calculated over the three contours, respectively
(see Fig. 1). Since the origin of the system (x9,x9) lies on the interface (Park and Earmme, 1986), the first
term in the right side is deduced to

My — /AB([W]x?n,- Tl ds (1i=1,2). (15)

Obviously, it vanishes in the present case due to the fact that x) = 0, n; = 0, and [u;;] = 0. Therefore, the
followmg mdnlyulation could be given by making the translation from the global system (x?,x9) to the local
system x1 ,x2 1e., Eq. (1)

N
M, (x),x3) = Mr(x3,x)) ZM]"k x),x9) Z{ / (Wadn; — TlulA,-x?)ds}

=1
{ / [W(xl(»k) + f?(k))ni - T;u,‘,-(xl(»k) + é?(k))} ds}
Ty

7{[Wx n; —T;u;lx }ds—&—é %(Wni — Tiuy;)ds
I

Ty

Il
M- M- 1

(M 0 )+ 80010 + 00, (16)

=
Il
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where M, (x\* ,xé )} is evaluated along I’y in the local system (x|, x{), J* and J{* are contributed by the

kth microcrack, which could be evaluated by using the projected relations (see Eq. (7) in Part I or see Zhao
and Chen, 1997a,b), which are cited here for convenience

I =B cosp, — P sing, S = sing, + I cos (17a)
and
W _ K2t LT w2 ey by k)2
T T8 (Kir)™ + (Kyr)™ — (Kip)™ — (K
. +2 | (17b)
k 2 k k) k
B = KK — KK | + A,

where the subscript star refers to the quantities in the local system (xﬁ ,x2 ) (see Fig. 1), the subscripts R

and L denote the right and left tips of the kth microcrack, the subscripts I and II denote the Mode I and
Mode II stress 1nten51ty factors, respectively, i, and p, are elastic constants of the brittle phase, i.e., the
material 2, and Fz* denotes the contribution induced from the traction-free faces of the kth mlcrocrack to
the second component of the J;-vector (Herrmann and Herrmann, 1981).

It is seen from Eq. (16) that the formulation of the M-integral in the present case is similar to Eq. (17¢) in
Part I for homogeneous brittle solids. It could also be divided into two distinct parts. One of them, i.e., the
net-part denoted by My, is contributed by the crack tip stress intensity factors of each subinterface crack:

N N

0 _(k Ky +1 0\2 £)\2 ©)\2 02

My =3 M () = D5 = { KR (KGR + (K + (K4 (1)
k=1 k=1

where a; refers to the half length of the kth microcrack. The other part, i.e., the additional part denoted by

My, 1s induced from the coordinates of the kth microcrack center and the J,-vector evaluated in the local

system (x\) x%)) and along the closed contour I';

MA—Z{é1 I+ g0 (19)

k=1

or in the local system (x\"), x{*)

My =Y {AV U cos g, — Y sing,) + YUY sing, + 1 cos )} (20)

k=1

However, it should be emphasized that all the physical quantities in Egs. (17a)—(20) have been influenced
by the existence of the interface. In other words, the values of the J;-vector and the M-integral are quite
different from those in homogeneous cases due to the interaction between the interface and the subinterface
cracks. A fundamental understanding of the influence will be discussed in the next section.

Smce the origin of the system (x0,x)) lies on the interface, the crack center coordinate
52 (k =1,2,...,N) could not vary when the origin moves a distance, say #,, from one point to other point

on the 1nterface (see Fig. 1). After the translation with the distance 7, the formulation (19) becomes

N
M, ;{51 +€z Jz }+770kz:1:J1(k)7 (21)

where the superscript star * denotes the quantities in a new system (x).,x.) whose origin also lies on the
interface, but whose vertical axis translates the distance 7, (see Fig. 1).
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As discussed above, the last term in the right side of Eq. (21) vanishes. Therefore, the independence of
the M-integral from the global system selection has been proved since the interface segment 4B has no
contribution to the J;-integral and in turn no contribution to the additional part of the M-integral

3.2. The origin of the coordinate system not located on the interface
Reconsider the microcrack damage problem shown in Fig. 1 but take another coordinate system (x;,x>),

whose origin is not located on the interface. After performing some manipulations, the following formu-
lation is given:

Mz

My, (x1,%2) = Mug(o1,%2) + Mr(1,x2) = > {Mr (6, 0) + 6000+ OIP} 4 Man(ri,w), (23)

k=1

where the last term Mz(x,x;) is induced from the segment 4B which should be specially considered with
caution in the (xi,x;) system

B X18
Myp(x1,x2) = / (Wain; — Toupx;) ds = 772/ [(W+ = W) = (opu), — ‘71_2”22)} dx (24)
A X14
in which 7, is the vertical distance from the origin O’ of (x;,x,) to the interface, x;4 and xz are the hori-
zontal coordinates of points 4 and B on the interface (see Fig. 1), respectively, and the superscripts + and —
refer to the upper boundary values and the lower boundary values on the interface, respectively.

Obviously, the path-dependency of the M-integral could be seen in Eq. (24) since different segment 4B
will lead to different value of M z(x,x,). However, when setting the closed contour I'y to be infinite large so
that the whole interface is enclosed, Eqgs. (23) and (24) will then become

N
My (rx2) = > { My () + €00 4+ E0U0 ) + M) (25)

k=1

and

o0

Moo (1) = Na)ase = 1, /

—0o0

(7 =) = (o, — o) | dx, (26)

where Eq. (26) could be evaluated after the interaction problem shown in Fig. 1 is solved (Zhao and Chen
1997b). Obviously, the value of J,,, does not depend on the selection of the coordinates although the value
of M. (n,) may depend on 1,.

It should be emphasized that Eq. (11) has shown the vanishing nature of the total contribution arising
from all the microcracks and the whole interface to the J,-integral. When making a coordinate transfor-
mation from the (x;,x,) system to the (x},x9) system whose origin lies on the interface, Eq. (25) yields that

My (x32) = > (M, () + (@9 ) + (&9 + )} + e

Mz EMz

{Mrk (o, 60y + a0 4+ &0 } + ’71ZJ e <Z‘] +J200>' 27

Obviously, the second term in the right side of Eq. (27) vanishes due to the validity of Egs. (13a)
and (13b) in Part I (the interface is parallel to the x;-axis). The third term vanishes too due to the new

=~
Il

1
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conservation law of the Ji-vector (11) established above, and therefore, Eq. (27) directly leads to the fol-
lowing conclusion:

Mfm(xth) :Mro(x(l)7x(2)) (28)

which confirms the independence of the M-integral from the selection of the origin of the global coordinate
system, whatever the origin lies on the interface or not.

It should be emphasized that Eq. (28) is conditional, i.e., the closed contour should be infinite large so
that the whole interface is enclosed in it otherwise the finite segment 4B on the interface leads to the path-
dependency of the My _(x;,x,) integral. In the forthcoming manipulations, it is always assumed that the
origin of the global coordinate system lie on the interface and the closed contour be infinite large.

As regards the rotation of the coordinates, it is easy to prove directly from the definition of the M-
integral that its value remains unaltered when the rotation of the coordinate system occurs (see Appendix A
in Part I or see Park and Earmme, 1986). Indeed, the value of the M-integral in bimaterials does not depend
on the selection of the coordinates, either on the translation or on the rotation. The assumption is that the
closed contour chosen beforehand has been chosen as infinite large and not only all the microcracks, but
also the whole interface are enclosed in it. Therefore, the confusion mentioned above which has been
bothering many people for a long time is clarified.

4. M-integral analysis for microcrack damage in the brittle phase

Numerical results of the M-integral analysis are given in this section for multi-microcracks beneath the
interface in the brittle phase of metal/ceramic bimaterial solids. Here, the global coordinate system is always
originated from a certain point on the interface so that the contribution of the microcracks to the M-
integral could be evaluated by Egs. (18) and (19) with no regards to those induced from the interface. The
numerical results for crack tip SIF’s as well as those contributed by the traction-free faces of the micro-
cracks to the J,-integral are computed by using the technique proposed by Zhao and Chen (1997b). The
detailed derivation procedure is no longer repeated here. The bimaterial solids considered below are loaded
by the remote tensile stress ¢ parallel to the vertical axis x3. Moreover, two tensile stresses 67, and ¢5°_ are
aided such that the following relation is met (Isida and Noguchi, 1994):

‘ )i 2 H ~ ) H
o5+ a*sin“y s { D (1 4+ 12) (072 + > sin“y) + K> m ( Kl)} oy }, (29)
where
oy = oy, = 05, = 07 cos’Y (30)

and p, and x; are material constants of the upper material (see Fig. 1).

In the numerical results presented below, the stress ¢5°, is always assumed to be zone, while the stress %,
does not appear in the manipulations and the calculations although Eq. (30) is actually met (Zhao and
Chen,1997b).

4.1. Two microcracks

Four kinds of two microcrack configurations are considered as shown in Fig. 2(a)-(d), respectively.
Here, d denotes the distance between the two centers of the microcracks, i denotes the distance from the
center of one microcrack to the interface, and o, and ¢, denote the location angle and the oriented angle,
respectively. The lengths of the two microcracks are assumed to be equal with each other and all numerical
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Fig. 2. (a)~(d) Four kinds of two-microcrack configuration.
Table 1
Dundurs’ parameters and the oscillation index
Parameters o p €
Cu/Al,04 —0.5118 —0.089 0.028
Ni/MgO —0.138 0.015 —0.0049
Homogeneous 0.00 0.00 0.00
Air/Al,O4 -1 -1 Infinite

results are confirmed by the consistency check (13) of Part I (see Zhao and Chen, 1997b). Here Cu/Al,O4
and Ni/MgO bimaterial solids as well as a homogeneous elastic solid are considered for making compar-
isons. The ductile phase, i.e., Cu or Ni, always occupies the upper half plane, while the brittle phase, i.e.,
AL, O3 or MgO, always occupies the lower half plane. The Dundurs parameters o, 5, and the oscillatory
index ¢ for the two bimaterial solids are shown in Table 1 (Hutchinson et al., 1987). It is noted that « is
always negative, while f is positive for Ni/MgO and negative for CuAl,O;, and ¢ is negative for Ni/MgO
and positive for Cu/A,0;. Obviously, o, 5, and ¢ are equal to zero in homogeneous cases.
All the computed values of the M-integral for the four configurations are normalized by

o’ (1 —vy)d?
My=-">"~""| 31
0 21ty (31)

where a refers to the half length of each microcrack and o, is the remote tensile stress which is always
loaded along the direction perpendicular to the interface.
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Fig. 3. (a)-(c) My, M,, and M against d/a for the case of Fig. 2(a).

Nevertheless, the subinterface cracks are assumed to be stationary or no crack is allowed to grow. This
could be ensured by controlling the remote tensile loading 0> together with Eq. (21b) in Part I. Computed
values of My, M, and M against the normalized distance d/a with #/a = 1.25 for the Fig. 2(a) are plotted
in Fig. 3(a)—(c), respectively. All the values are normalized by Eq. (31) for making comparisons. The real
curves refer to the results in homogeneous solids, the imaginary curves refer to the results in Cu/Al,O3
bimaterial solids, while the dotted curves refer to the results in Ni/MgO bimaterial solids. It is seen that,
when d/a decreases for the collinear microcracks beneath the interface, the net part of the M-integral, My,
always increases and the additional part of the M-integral, M, always decreases, while their summation,
M = My + M,, always increases, no matter what kind of metal/ceramic bimaterial solids is considered. This
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means that in the present microcrack arrangement the M-integral is mainly governed by the net-part.
Particularly, when d/a > 4, M, is within ten percent of M and it could be neglected indeed. However, when
d/a < 4, specially when d/a < 3, the contribution of M, to M becomes remarkable which could no longer
be neglected. It could be concluded from Fig. 3(c) that the M-integral represents the level of the interac-
tion effect and the coalescence tendency between the two collinear microcracks although it has been proved
to be the summation of the two parts, i.e., My and M,. The larger interaction effect between the two
microcracks, the larger value of M in magnitude. Of course, when the interaction effect becomes smaller
corresponding to the case that the two collinear microcracks are located far apart, the net-part of the M-
integral, i.e., My, provides a good approximation to the M-integral. Moreover, it is seen in Fig. 3(a)—(c)
that the imaginary curves (Cu/Al,O;) and the dotted curves (Ni/MgO) have significant divergencies from
the real curves corresponding to homogeneous cases. Obviously, this is due to the mismatch nature of the
bimaterial solids, Ni/MgO and Cu/Al,Os. It could be seen that the existence of the ductile phase, Cu or Ni,
always leads to increase M)y and decrease M, and in turn to increase M. It is concluded that this kind of
collinear microcrack arrangement in the brittle phase of the metal/ceramic bimaterial solids shows less
stable nature and larger coalescence tendency than the corresponding one in homogeneous solids due to the
existence of ductile phases and that the M-integral actually plays an important role to describe microcrack
damage in bimaterial solids. Of great interest is the influence of the ductile phase on the above mentioned
divergencies of My, M,, and M which is obviously governed by the first Dundurs parameter & with no
regards to the second parameter . As shown in Table 1, « = —0.138 for Ni/MgO and « = —0.5118 for Cu/
AL, O3 (see Hutchinson et al. 1987), while o = 0 for homogeneous solids. This means that the value of o for
Cu/Al,O; shows larger deviation from zero (corresponding to homogeneous solids) than the value of « for
Ni/MgO. Indeed, it is this reason that the computed values of My, M,, and M for Cu/Al,O; bimaterial
show larger divergencies from the values for homogeneous solids than those for Ni/MgO bimaterial.
Nevertheless to say, the second parameter 5 has no such a nature (see Table 1). In other words, it is the first
parameter o rather than the second parameter § that dominates the divergencies of the imaginary curves
and the dotted curves from the real curves in Fig. 3(a)—(c). Moreover, as the computed values of M for
metal/ceramic bimaterial solids are always much larger than those for homogeneous solids, it is concluded
that a certain microcrack array in the brittle phase of metal/ceramic bimaterial solids shows lower stability
and larger coalescence tendency than the same microcrack array in homogeneous brittle solids.

Consider the microcrack arrangement shown in Fig. 2(b). Computed values of My, M, and M against
the location angle oy with d/a = 4.0 and h/a = 1.25 are plotted in Fig. 4(a)—(c), respectively. It is seen that
the similar conclusions could be given as those mentioned above for Fig. 2(a). Indeed, the values of My,
My, and M for Cu/Al,O; bimaterial (imaginary curves) and for Ni/MgO bimaterial (dotted curves) show
large divergencies from those for homogeneous solids (real curves). These divergencies are also governed by
the first Dundurs parameter o rather than f. It is also seen that, to a certain degree, for example, when the
location angle o is between 40° and 140°, the net part of the M-integral, i.e., My, overwhelming the ad-
ditional part, i.e., M, becomes a good approximation of the M-integral with errors less than ten percent.
However, when taking oy < 40° or oy > 140°, especially when taking oy < 30° or oy > 150°, the contri-
bution of M, to the M-integral could no longer be neglected. Of great interest is that the values of the M-
integral in Fig. 4(c) for metal/ceramic bimaterial solids are always larger than the corresponding values for
homogeneous brittle solids. This confirms again that a certain microcrack array in the brittle phase of
metal/ceramics bimaterial solids shows lower stability and larger coalescence tendency than the same mi-
crocrack array in homogeneous brittle solids.

Consider the microcrack arrangement shown in Fig. 2(c). Computed values of My, M,, and M against
the oriented angle ¢, with 2/a = 1.25 and d/a = 4.33 are plotted in Fig. 5(a)—(c), respectively. Although the
microcrack arrangement is quite different from the above discussed two examples, the similar conclusions
could still be given. The values of My in metal/ceramic bimaterial solids are always larger than those
derived in homogeneous solids. Quite contrary, the values of M, in metal/ceramic bimaterial solids are
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Fig. 4. (a)-(c) My, M,, and M against o, for the case of Fig. 2(b).

always smaller than those derived in homogeneous solids. There exist apparently significant divergencies of
the values of M in bimaterial solids from those in homogeneous brittle solids. The divergencies are actually
governed by the first Dundurs parameter o« with no regards to the second parameter . What’s more,
the larger divergency of « from zero, the larger divergencies of M from those for homogeneous brittle
solids.

Finally, consider the microcrack arrangement shown in Fig. 2(d). Computed values of My, M,, and M
against the oriented angle ¢, with #/a =2.0 and d/a = 1.2 are plotted in Fig. 6(a)-(c), respectively.
Although the microcrack arrangement is quite different from the above discussed three examples, the
similar conclusions could be given, which are no longer repeated here for shortening the length of this
paper.
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4.2. Four microcracks

Four interacting microcracks beneath the interface in the brittle phase of bimaterial solids are shown in
Fig. 7. Take the lengths of the microcracks to be the same and take the normalized center-to-center dis-
tances to be equal with each other (d/a = 2.25). While the oriented angle ¢ is taken to be a variable from
0° to 90° and the normalized distance between the interface and the neighbouring microcracks to be
h/a =1.2 (see Fig. 7).

Computed values of My, M4, and M against the oriented angle ¢, are plotted in Fig. 8(a)—(c), re-
spectively. It is seen that the conclusions derived in two microcracks arrangements could still be given in the
present case for the four microcracks arrangement. It is concluded that the conclusions given in this paper
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are inherent in the M-integral analysis no matter what kind of microcrack configurations in the brittle
phase is considered, providing that the microcracks are stationary, fully open, and not intersected.

4.3. A half plane brittle solid containing multi-cracks

In order to show the potential applications of the present investigation, an extension of the present
investigation to treat the multi-cracks problem in a half plane brittle solid is discussed briefly (see Fig. 9).
Here, the outside boundary of the solid is taken along the x;-axis, which is considered as a special kind of
interface between air and the solid with the first Dundurs parameter « = —1. The global coordinate system
is originated at a fixed point on the boundary. The remote loading is preferred along the x;-axis only. A
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Fig. 7. Four microcracks beneath the interface.

two-crack array is considered. The left crack is taken as always perpendicular to the boundary, while the
right crack is oriented by an angle ¢,, which is taken as a variable from 5° to 175°. The normalized distance
h/a =125 and d/a = 1.25,/3. Tt is found that the M-integral takes the same variable tendencies for the
three different kinds of material combinations (Air/Al,O3 with o = —1, Cu/Al,O; with o = —0.5118, and
Ni/MgO with o = —0.138) (Fig. 10). However, there exist apparent divergencies among the three curves
respectively corresponding to the real curve, the dotted curve, and the imaginary curve. As discussed above,
the divergencies are dominated by the first Dundurs parameter o. The larger divergency of the parameter is
from zero, the larger value of the M-integral is deduced. It is concluded that the outside boundary of the
half plane solid could actually be treated as the special kind of interface between air and the brittle solid.

Therefore, the role the outside boundary plays in the M-integral analysis has been clarified. The present
investigation could then easily be extended to treat a finite plane solid containing multi-cracks without any
difficulties. The major idea is that the outside boundaries of the solid should be treated as a special kind of
interface between air and the solid (or between a rigid body and the solid). Detailed manipulations and
numerical examinations are beyond the scope of this paper.

5. Summary

From the above mentioned discussions, the following summary could be given:

(1) Although the existence of interface yields considerable trouble, the M-integral in a metal/ceramic
bimaterial solid with strongly interacting microcracks in its brittle phase is still divided into two distinct
parts. As in homogeneous cases, the first part is induced from the stress intensity factors at all microcrack
tips although the existence of the interface disturbs the values of the SIF’s significantly. Of great interest is
that the second part is proved to be induced only from the global coordinates of each microcrack center and
the Ji-vector of each crack with no regards to the contribution induced from the existence of the interface.
This is due to the fact that the M-integral is independent from the selection of the origin of the global
coordinate system when the closed integral contour is chosen to be infinite large, i.e., not only all the
microcracks, but also the whole interface are enclosed in it. Therefore, the origin of the system could always
be chosen on a certain point of the interface. Moreover, it is found that, generally speaking, the first part of
the M-integral (i.e., the net part My) does not make overwhelming superiority over the second part (i.e., the
additional part M) for a certain microcrack array in the brittle phase.

(2) The M-integral plays an important role for microcrack damage in the brittle phase of metal/ceramic
bimaterial solids. It could be considered as a measure of the damage level, the microcrack stability, and the
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Fig. 8. (a)—(c) My, M,, and M against ¢, for the case of Fig. 7.

microcrack coalescence tendency. The present investigation does confirm the conclusions given in Part I of
this series and does extend the M-integral analysis to treat multi-crack problems in much more complicated
cases. It actually provides a new way to describe the microcrack damage phenomena, at least, in brittle
solids, in the brittle phase of metal/ceramic bimaterial solids, and in half plane brittle solids. It is found that
the restriction arising from the investigation in Part I, i.e., the manipulations are only valid in an infinite
case, could be removed without doubt.

(3) There always exist significant divergencies of the M-integral values in metal/ceramic bimaterial solids
from those for the same microcrack array in homogeneous brittle solids. The divergencies are governed by
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the first Dundurs parameter o with no regards to the second parameter 5. The larger divergency of « from
zero, the larger divergencies of the values of the M-integral in metal/ceramic solids from those in homo-
geneous brittle solids, providing that the same microcrack configuration is considered in both kinds of
solids.

(4) For the same kind of microcrack array, the values of the M-integral in the brittle phase of a metal/
ceramic bimaterial are always larger than those in a homogeneous brittle solid. This is due to the existence
of the ductile phase or due to the interaction of the microcrack array with the interface. Therefore, it is
concluded that a certain microcrack array in the former case shows lower stability and larger coalescence
tendency than the same array in the later case. Of course, the largest value of the M-integral occurs for the
same microcrack array in air/brittle bimaterial since the first Dundurs parameter takes —1 corresponding to
the largest divergence from zero (homogeneous cases).
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(5) The brief investigation for a half plane brittle solid shows that the M-integral analysis could be
extended to treat microcrack damage problems in a finite brittle solid. The only correct way is to consider
the outside boundaries of the finite solid as a special kind of interface between air and the solid (or between
a rigid body and the solid). This topic will be discussed in detail in the present author’s sequential papers.
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